基于点云数据与光学遥感影像的协同应用在遥感领域获得广泛关注,为了对两种数据进行精确的配准以更好地融合两者优势,提出了一种城市场景下点云与光学遥感影像的自动配准方法。首先,由点云数据生成深度影像,即3D数据转换为2D影像;然后,运用Unet模型对深度影像和光学遥感影像分别进行训练并分割得到建筑面;再基于建筑面轮廓点集构建建筑最小外接矩形,将矩形长宽比作为寻找同名点的约束条件;接着,利用相似三角形原理寻找矩形中心同名点;最后,同名点坐标代入变换模型计算模型参数,完成配准。实验结果表明该方法对于运用传统点特征方法匹配困难的情况可实现较好的配准效果,且对图像平移、旋转、缩放均具有可抗性。
上一篇:基于遥感的广西甘蔗种植面积提取及长势监测
下一篇:没有了