遥感学报

无人机遥感与的红树林物种分类 

来源:遥感学报 【在线投稿】 栏目:期刊导读 时间:2021-04-21
无人机遥感数据会衍生大量的光谱、纹理与结构特征,如何提取优势特征是提高红树林物种分类效率和精度的关键问题。针对深圳福田红树林自然保护区缓冲区获取的无人机高光谱影像和Li DAR点云数据,本研究旨在利用极端梯度提升算法(XGBoost)的"特征重要性"属性筛选出适合红树林物种分类的8类优势特征:基于无人机高光谱影像的单一特征(光谱波段、植被指数和纹理特征:F1—F3)及其融合特征(F4)、基于Li DAR点云的单一特征(高度和强度特征:F5和F6)及其融合特征(F7)、高光谱影像与Li DAR点云的融合特征(F8);基于以上优势特征构建8个XGBoost分类模型。结果表明:综合物种分类精度及其制图结果,基于F8特征的模型分类性能最佳(总体精度为96.41%,莫兰指数为0.5520);基于单一数据源融合特征(总体精度,F4:96.74%;F7:90.64%)的分类性能优于基于单一特征(总体精度,F1—F3:90.31%、92.20%和91.96%;F5和F6:87.66%和81.99%);基于融合特征(F4、F7和F8)和纹理特征(F3)分类图的莫兰指数比基于单一特征(F1、F2、F5和F6)的更大。本文论证了无人机遥感数据和XGBoost方法在基于像元的红树林物种精准分类上具备可行性,可为红树林生态系统健康、保护与恢复的立体监测提供科学依据和技术支撑。

上一篇:青藏高原生态系统完整性远程评价与国家公园群
下一篇:没有了