《遥感学报》
文章摘要:传统的卷积稀疏编码超分辨率方法在特征空间转换时仅引入线性投影关系, 且在特征图的学习中未能考虑局部细节信息, 从而造成重建结果在边缘和细节方面不尽人意. 为此, 将卷积稀疏编码理论引入遥感影像的超分辨重建框架中, 提出一种多尺度半耦合卷积稀疏编码的超分辨率重建方法. 首先对输入影像进行多尺度分解, 提取出平滑分量和多个尺度的纹理分量, 并对最终的平滑分量进行双三次插值重建; 然后将每个尺度的纹理分量进行半耦合卷积稀疏编码重建, 利用非线性卷积算子作为每个尺度下纹理分量的高分辨率特征图与低分辨率特征图之间的投影函数, 并在特征图的学习中引入非局部自相似性结构进行约束优化, 从而更好地重建出每个尺度下的纹理分量; 最后将重建后的平滑分量和每个尺度下的纹理分量进行叠加, 获得最终的重建影像. 以4种不同传感器的遥感影像作为实验影像, 与几种先进的超分辨率重建方法对比的实验结果表明, 所提方法获得的重建影像在定量分析指数PSNR和FSIM方面均优于其他方法, 表现出更为清晰的边界和细节信息, 且具有一定的抗噪性能.
文章关键词: